Brian Adams

    Brian Adams ’99

    Back to All , Spotlights

    1999

    Brian Adams headshot

    I am a member of Technical Staff in an Optimization and Uncertainty Quantification group at Sandia National Laboratories in Albuquerque, NM. While projects and priorities are in constant flux (part of the excitement of working for a DOE lab), my current work is divided between modeling disease spread and developing and applying large-scale optimization software.

    I leverage my Ph.D research experience in mathematical biology (in field of Computational Applied Mathematics at NC State Univ.) as the lead developer of a social network-based disease model, which characterizes disease spread (due to bioterror attack or natural outbreak) within a city’s population. The model is fine-grained, representing the movement of millions of individuals around hundreds of thousands of city locations on a timescale of order minutes. It allows representation of diseases spread by direct human contact (e.g., smallpox or influenza) or contamination (e.g., anthrax). My other work mostly relates to DAKOTA, a Sandia-developed open source software suite for optimization, sensitivity analysis, and uncertainty quantification. I develop and support the DAKOTA software and apply it to design of microelectromechanical systems (MEMS), miniature silicon-based actuators, switches, and machines. The goal of this work is to determine MEMS geometries that meet performance (operational) criteria, yet are robust to manufacturing process uncertainties.

    My experiences with the Saint Michael’s College mathematics department motivated me to attend graduate school in applied mathematics. My current work directly benefits from coursework in both the mathematics and computer science departments at Saint Michael’s, and from the critical thinking and problem solving skills nurtured by the liberal arts environment.